Table of Contents

I Introduction	I
II Hydrologic Model Development	
A. Hydrologic Model Description (HYDROSS)	
B. Summary of Phase I, Part A to Phase II Model Modifications	
C. Model Assumptions	
1. Water Use Projections	
a. City of Breckenridge, Minnesota	
b. City of Drayton, North Dakota	
c. City of East Grand Forks, Minnesota	
d. City of Fargo, North Dakota	. 23
e. City of Grafton, North Dakota	
f. City of Grand Forks, North Dakota	. 27
g. City of Lisbon, North Dakota	. 27
h. City of Moorhead, Minnesota	
i. City of Valley City, North Dakota	. 28
j. City of Wahpeton, North Dakota	. 28
k. City of West Fargo, North Dakota	. 28
Cities Not Directly Included in the Hydrologic Model	. 29
m. Cargill Corn Processing Plant and Similar Future Industrial	
Centers	. 31
n. Rural Water Systems	. 32
2. Monthly Demand Distribution	35
3. Return Flows	. 36
a. Return Flows from M&I Use	. 36
b. Return Flows from Other Uses	. 36
4. River and Reservoir Operations	. 37
a. Lakes Orwell, Traverse, and the Upper Red River	. 37
b. Lake Ashtabula Operations	. 38
c. Lower Red River Operations	. 44
d. Red Lake River Operations	. 44
5. Channel Losses	. 45
6. Irrigation	48
III Model Simulations, Analysis, and Results	49
A. No Action (Baseline) Option	52
1. Existing (Year 1994) Condition Baseline	
a. Model Run: R30K94	
2. Future (Year 2050) Condition Baseline	59
a. Model Run: R30K50	
b. Model Run: P30K50	. 63

B.	Action Alternatives: Single Component Features	67
	1. In-Basin Features	
	a. Utilizing Surface Water Supplies	67
	1. Feature #1: Additional In-Basin Storage -	
	Enlargement of Lake Ashtabula	67
	a. Model Run: R19E50	67
	b. Model Run: R19F50	73
	2. Feature #2: Build a New Reservoir on the Sheyenne	
	River Near Kindred	77
	a. Model Run: RKIN50F	
	b. Model Run: RKIN50E	85
	3. Feature #3: Construction of a New Reservoir on the Maple Riv	ver
	a. Model Run RMAP50F	
	b. Model Run RMAP50E	98
	4. Feature #4: Supply Water to the Upper Red River from	
	Maple Lake Reservoir. Based on model runs for Feature #3.1	03
	5. Feature #5: Off-Stream Storage near Fargo	
	Based on model runs for Feature #3	105
	6. Feature #6: Purchase of Mainstem Red and Sheyenne River	
	Surface Irrigation Water Rights for M&I Use	
	a. Model Run: RIRR50C	
	b. Utilizing Ground Water Supplies	
	1. Feature #7: Secure Additional Unappropriated Ground Water	
	and Pump from the Spiritwood Aquifer1	15
	2. Feature #8: Acquire Existing Ground Water Rights by	
	Purchasing Land from Irrigators who are Willing Sellers 1	15
	3. Feature #9: Aquifer Water Storage and Recovery (Ground	
	<i>U</i> ,	16
	4. Feature #10: Build Desalinization Plants to Treat Water	140
	from the Dakota Aquifer	
	c. Reusing and Conserving Existing Supplies	
	1. Feature #11: Reuse Municipal Wastewater for Urban Irrigation	on
	for the Cities of Fargo, Moorhead, West Fargo and	120
	Grand Forks	
	a. Model Run: RRUC50C	120
	2. Feature #12: Develop and Implement an Increased City	120
		130
		130
	3. Feature #13: Drought Contingencies - Modify Lake Ashtabu	па
	Operation to include Minimum Pool Storage for	125
	M&I Supply	
	a. Model Run: R00K50	ככו

2. Transfers From Out-of-Basin	
a. Supplementing Surface Water Supplies	139
1. Features #14a and 14 b: Import Water to the Upper Sheyen	ne
River at Mile 59 and 70 from McClusky Canal	139
a. Model Run RIMPS50	139
2. Feature #15: Import Missouri River Water to the Wild	
Rice River in North Dakota	145
a. Model Run RIMPR50	145
3 Feature #16: Import Water to the Upper Red River	
a Feature #16a: Import Water in Pipe From South	
Of Bismarck to Red River near Wahpeton	153
b. Feature #16b: Import Water to the Upper Red	
River near Lisbon to the Red River near Wahpeton.	155
4. Feature #17: Importation to Rural Water Systems	158
a. Model Run RURAL50	
b. Importing Water to Existing Water Systems	
1. Feature #18: Bismarck-Fargo Pipeline	
a Model Run: RIMRF50	161.
2. Feature #19: McClusky Canal to Hillsboro Pipeline	
a Model Run: RIMRS50	167
3. Feature #20: Jamestown-Fargo Pipeline	
a. Model Run: RIMRF50	172
4. Feature #21: Rural Water Systems - Western Red	
River Valley Pipeline	178
C. Action Alternatives: Combination (Multi-Component) Options	179
1. Baseline - Year 2050 Reclamation demands under existing Conditions	
a. Model Run: BASELINE	183
2. Alternative 1 (no action) Future condition	
a. Model Run: ALT1 (without rural demands)	187
b. Model Run: ALT1R (with rural demands)	191
3. Alternative 2 -In-basin Lake Kindred	
a. Model Run: ALT2R (with rural demands)	196
4. Alternative 3 -In-basin Enlarged Lake Ashtabula	
a. Model Run: ALT3-28B (without rural demands)	203
5. Alternative 4 -In-basin utilizing groundwater	
a. Model Run: ALT41LAR (with rural demands)	209
6. Alternative 5 -In-basin pipeline from Bismarck to Fargo	
a. Model Run: ALT5A1R (with rural demands)	216
7. Alternative 6 -In-basin pipeline from Lake Oahe to Wahpeton	
a. Model Run: ALT6R (with rural demands)	223
8. Alternative 7A -Import to Upper Sheyenne River - Coteau Route	
a. Model Run: ALT7ABCR (with rural demands)	229
9. Alternative 7B -Import directly to Upper Sheyenne River	
a. Model Run: ALT7ABCR (with rural demands)	234

10. Alternative 7C -Import to Upper Sheyenne River - Northern Route
a. Model Run: ALT7ABCR (with rural demands) 239
11. Alternative 7D -Import to Upper Sheyenne River and pipeline to Grand Forks
a. Model Run: ALT7DR (with rural demands)
12. Alternative 8 - Import with dedicated Western Red River Valley pipeline
a. Model Run: ALT8R (with rural demands)
13. Participant 2050 Demand Projection Model Runs
ı v
a. Alternative 1 - Model Run: ALT1P
b. Alternative 2 - Model Run: ALT2RP
c. Alternative 3 - Model Run: ALT3P
d. Alternative 5 - Model Run: ALT5A1P
e. Alternative 7abc - Model Run: ALT7abcP
IV Summary and Recommendations
A. Results of the River Operation Studies
B. Recommendations
B. Recommendations 202
V References
Attachments
Attachment A: City of Fargo Projected Water Use
Attachment B: Ground Water Supporting Material
Attachment C: HYDROSS Model Description
Attachment D: North Dakota Water Right Listings of the Red River
Attachment E: North Dakota Water Right Listings of the Sheyenne River
Attachment F: Crop Irrigation Requirement Estimates (1931-1984) for the Red River Valley
Attachment G: Comparison/Summary of Flow Activity for all Feature HYDROSS Simulation
Runs at selected flow points along the Sheyenne and Red River Valleys
Attachment H: Annual Summary of City Shortages for Red River Valley Simulation Runs
Attachment I: Thomas-Acker Plan Allocations
Attachment J: Conservation Feature Demand Development
Attachment K: South and North Rural Water Demands Computation
Attachment L: Lake Ashtabula, Lake Kindred, and Ring-dike End of Month Content Tables
and Graphical Presentation for the Drought Period of 1931-1941
Attachment M: Average Monthly Flow Tables for each Station during the Study Period
of 1931-1984 and Drought Period of 1931-1940 and Graphical Presentation for the
Drought Period of 1931-1941
Attachment N: Median Monthly Flow Tables for each Station during the Study Period
of 1931-1984 and Drought Period of 1931-1940 and Graphical Presentation for the
Drought Period of 1931-1941
Attachment O: Comparison of Baseline 1994 Condition and Alternative 1 No Action with
2050 Condition Median and Average Monthly Flow at each Station